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Abstract: Quantum mechanical rate constants are computed for the collinear reaction H + Cl2 -*• HCl + Cl using the reaction 
probabilities of Baer. For comparison we also computed reaction probabilities and rate constants for this reaction using (a) the 
quasiclassical trajectory method, (b) the reverse quasiclassical trajectory method, (c) the classical S matrix theory (using real-
valued trajectories only), and (d) transition-state theory assuming separability of the reaction coordinate at the transition 
state. Comparisons are made not only for total reaction probability and total rate constant but also in general for state-to-state 
reaction probabilities and state-to-state rate constants. The quasiclassical trajectory method is generally accurate except in 
the threshold regions for various state-to-state processes. It is more accurate for total reaction probabilities and total rate con­
stants than for state-to-state reaction probabilities and rate constants. The quasiclassical trajectory calculations of total rate 
constants for reaction in a given initial vibrational state agree with the quantum calculations within 29% for the 300-1000 K 
temperature range but the state-to-state rate constants may be in error by a factor of 2 or more even for processes which are 
classically allowed in the sense of classical S matrix theory. Classical S matrix theory does not always provide a more accurate 
way to extract state-to-state reaction probabilities from these trajectories. Transition state theory (which yields average reac­
tion probabilities and total rate constants for a thermal distribution of initial states but does not yield state-to-state results) is 
fairly accurate for this reaction even with the assumption that the reaction coordinate is separable. 

I. Introduction 
Molecular trajectory calculations2 are an important and 

useful method for studying cross sections, rate constants, and 
product energy distributions for gas-phase chemical reactions. 
A popular type of trajectory calculation is the quasiclassical 
trajectory method.3 In this method analysis of final classical 
energy distributions in terms of quantum states of the product 
is usually performed using the histogram method.4 The quas­
iclassical trajectory method is inaccurate in general due to lack 
of knowledge of the correct potential energy surface, to sta­
tistical errors when enough trajectories are not run, and to the 
inadequacy of classical mechanics for certain aspects of 
chemical dynamics. The last of these sources of error is poorly 
understood. In principle it is straightforward to study this 
source of error: one assumes a realistic potential energy surface, 
calculates exact quantum mechanical cross sections and rate 
constants, and compares these to quasiclassical cross sections 
and rate constants computed with a small enough statistical 
error for the same potential energy surface. Since calculation 
of exact quantum mechanical cross sections has just become 
practical and since exact quantum mechanical rate constants 
have not yet been published, such comparisons have been 

limited to cross sections for three-dimensional5 and planar6 H 
+ H2 and to collinear reactions. 

Comparisons of exact-quantum and quasiclassical-trajectory 
collinear reaction probabilities have been presented for the 
thermoneutral reaction H + H2,

7"14 the slightly endothermic 
reaction Cl + H2 and its isotopic analogues,15 and the exo­
thermic reactions F + H2 ,1 6 1 8 F + D2,

19-20 and H + Cl2.
21 

However, Baer22 has concluded that the quantum calculations 
used for the last-named comparison seem to be inaccurate. 
Comparisons of exact quantum and quasiclassical trajectory 
calculations on the level of one-dimensional rate constants are 
even more scarce and such comparisons have been presented 
only for Cl + H2, F + H2, and some of their isotopic ana­
logues.151819 In this article we compare Baer's accurate 
quantum reaction probabilities for H + Cl2 to the results of 
newly computed quasiclassical trajectory calculations. Further 
we compute one-dimensional rate constants from both sets of 
reaction probabilities and we compare these. Our comparison 
includes rate constants for reactions of vibrationally excited 
reagents, a feature not present in any previous comparisons. 

Another method of calculating reaction probabilities, cross 
sections, and rate constants from classical trajectories is the 
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classical S matrix theory.23 In general classical S matrix theory 
involves contributions from both complex-valued and real-
valued trajectories. Processes for which the latter contribute 
in a stationary phase approximation are called classically al­
lowed.20-23-24 In this article we compare exact quantum col­
linear reaction probabilities and one-dimensional rate constants 
to classical S matrix calculations involving real-valued tra­
jectories only. The motivation for restricting ourselves to 
real-valued trajectories is to test the two most general methods 
(quasiclassical trajectory method and classical S matrix theory 
for classically allowed processes) for using real-valued classical 
trajectories to study chemical reaction cross sections and rates. 
The use of complex-valued trajectories is more difficult and 
is not a widely used technique for studying chemical reactions; 
complex-valued trajectories have been calculated for reactive 
collisions in only a few cases20,24 and in one case18 a simpler 
analytic continuation technique was used. The complex-tra­
jectory technique has not been demonstrated to be a generally 
practical method for treating reactive collisions. Classical S 
matrix theory collinear reaction probabilities and one-di­
mensional rate constants have previously been compared to 
accurate quantum results only for H + H2,

10~13'14b'25 F + 
H2,

17'18 and F + D2.
19^20 Miller and Rankin26 calculated a few 

state-to-state reaction probabilities for H + Cl2 using classical 
S matrix theory and the quasiclassical trajectory histogram 
method, but they indicated that a detailed comparison with 
accurate quantum results was not possible because the quan­
tum results then available neglected closed channels and used 
a harmonic approximation. Baer22 has also found those 
quantum results to be inaccurate. A comparison of quantum 
and classical S matrix results for planar H + H2 has also been 
reported.6 

What has been learned from the previous tests of real-valued 
trajectory methods against exact quantum results for non-
thermoneutral reactions?14*3 Baer, Halavee, and Persky15 

found the quasiclassical trajectory technique underestimated 
the total reaction probabilities for Cl + H2 and three of its 
isotopic analogues for ground-state reactants near threshold 
but for Cl + HD —* HCl + D it overestimated the reaction 
probability for ground-state reactants near threshold except 
in the very low energy region which is classically forbidden. 
At higher relative kinetic energies, up to about 14 kcal/mol, 
the trajectory results for total reaction probabilities for ground-
or excited-state reactants agreed with the quantum results on 
the average although they showed no oscillations. The devia­
tions were larger for excited-state reactants and this was at­
tributed to the greater role of resonances in that case. The 
deviations were also larger for state-to-state reaction proba­
bilities than for total reaction probabilities. Baer et al. found 
that rate constants computed from the trajectories differed 
from accurate quantum ones by factors of 0.63 to 2.34 at 300 
K but only 0.86 to 1.81 at 1000 K. Transition-state theory was 
only slightly less accurate than the trajectory me^iod for 
computing rate constants. For the exothermic F-I-H2 and F 
+ D2 reactions, Schatz, Bowman, and Kuppermann17'19 and 
Whitlock and Muckerman20 found that quasiclassical tra­
jectory calculations and uniform classical S matrix calculations 
generally gave similar results for the classically allowed 
transitions. The main exception was the transition probability 
for producing the most highly excited energetically allowed 
product state. For this state the quasiclassjcal trajectory his­
togram method predicted too high a threshold but uniform 
semiclassical and reverse quasiclassical calculations were more 
accurate. For F-I-H2 the uniform semiclassical method was 
more accurate than the reverse quasiclassical method but the 
opposite was true for F + D2.1819 But the reverse quasiclassical 
method predicted an incorrect reaction threshold of zero rel­
ative translational energy. The fraction of available energy 
appearing as product vibration was correct within about 10% 

at given energies but was not averaged over thermal distribu­
tions of relative translational energy. Thermally averaged 
ground-state-to-product-state rate constants were much more 
accurate at 1000 than 300 K. No previous tests of trajectory 
methods for excited-state reactants are available for exo­
thermic reactions. 

The H -I- Cl2 reaction has been extensively studied both 
experimentally and theoretically.27 However, many of the 
conclusions of the present study should apply not only to this 
important reaction but also to other similar reactions, espe­
cially exothermic reactions of a light atom with a heavy mol­
ecule. For this mass combination, many aspects of the collinear 
reaction are reasonably representative of the reaction in a 
larger number of dimensions,28,29 at least when the potential 
energy surface favors collinear reaction. The potential energy 
surface for the real H + Cl2 system is believed to favor collinear 
reaction30 and the approximate H + Cl2 potential energy 
surface used for the present study also favors collinear reac­
tions. 

II. Calculations 
A. Potential Energy Surface. The potential energy surface 

used for these calculations, and Baer's accurate quantum 
calculations to which comparison is made, is a LEPS semi-
empirical surface whose parameters are given by Baer.22 For 
this surface the classical exothermicity is 48.64 kcal/mol. We 
calculated a classical barrier height E\, of 2.42 kcal/mol and 
saddle point coordinates of 2.017 A for the Cl-Cl distance and 
2.251 A for the H-Cl distance (which may be compared to 
reagent equilibrium internuclear distance of 2.000 A and 
product equilibrium internuclear separation of 1.273 A, re­
spectively). 

B. Reagent and Product Vibrational States. All energies will 
be measured from the classical potential energy minimum for 
the H + Cl2 reagent. We used masses of 1.008 amu for H and 
35.5 amu for Cl. The usual expression for the eigenenergies of 
a Morse oscillator and the parameters used for the potential 
energy surface then yield the energies for the asymptotic 
quantized vibrational states given in Table I. These agree with 
the values given by Baer within 0.04 kcal/mol for Cl2 but much 
more poorly for HCl, presumably due to inaccuracies in the 
quantum calculations. (Using a mass of 35 amu for Cl does not 
change the comparison appreciably.) Hopefully any associated 
inaccuracies in the quantum probability calculations do not 
affect the major conclusions of the comparison of dynamical 
quantities in this article. 

C. Trajectories. The trajectories were calculated using a 
modified version of a program described elsewhere.'3 The 
following parameters for the numerical integration were found 
to lead to suitably accurate results: initial and final /?HB (the 
Cl atoms are labeled B and C, respectively, and the internu­
clear distances satisfy /?HC = -KHB + RBC) equal to 5.5 A, final 
RBe equal to 5.0 A, and time step equal to 2 X 10 - '6 s. Many 
trajectories were back-integrated to test their accuracy. 

From the results of the quasiclassical trajectories31 we cal­
culate the reactive transition probabilities P„in2

R f°r H + 
Cl2(«i) -*• HCl(H2) + Cl, where n\ and W2 are vibrational 
quantum numbers, using classical S matrix theory in its various 
orders of approximation and using the quasiclassical trajectory 
histogram method. The classical S matrix methods have been 
adequately discussed, with references, elsewhere13'23'24'32-33 

and so we will not repeat all the details. The orders of ap­
proximation we investigated are the classical limit (CSC), the 
primitive semiclassical (PSC), the Airy uniform semiclassical 
(AUSC), and the Bessel uniform semiclassical (BUSC) ap­
proximations. The formulas for these approximations 
(CSC,13-32 PSC,13-32 AUSC,13'32 and BUSC33) are given 
elsewhere. Henceforth we add the suffix CA to these abbre­
viations to serve as a reminder that only real-valued trajectories 
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Table I. 

n 

Eigenstates E„v of Cl2 and HCl (kcal/mol) 

Cl2 HCl 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0.79 
2.37 
3.92 
5.45 
6.95 
8.44 
9.90 

11.34 
12.76 

-44.40 
-36.19 
-28.31 
-20.78 
-13.60 

-6.76 
-0 .26 

5.90 
11.71 

(classically allowed processes) are included in the present study 
of these semiclassical approximations. To evaluate P„in2

R in 
these semiclassical approximations we located the roots of 
«2(91,«i) = «2 [where, in the notation established previous­
ly,13,32 «2(91.«0 is the final vibrational action as a function 
of initial vibrational phase shift q~\ and quantum number n\\ 
«2 is the integer in Pn]n2

R] between two trajectories differing 
in q\ by 27r/210 or 2ir/420 [the latter was necessary to obtain 
accurate values for the phase <t>(q\,n\) of the classical S matrix 
accurately at energies very near a threshold for a given state-
to-state process to become classically allowed], and obtained 
the necessary information corresponding to the root by an in­
terpolation procedure described previously.34 In all cases 
considered here, when the quasiclassical probability of reaction 
QCP„R is unity (total energies 3.46-9.22 kcal/mol for M1=O 
and 5.26-7.40 kcal/mol form = 1) there are zero or two roots 
for each given state-to-state process but when QCPm

 R is less 
than unity (other energies for «1 < 1 and all energies forni = 
2) there are zero or more than two roots. In the latter cases we 
included only the two roots with largest values of the Jacobian 
[27r dn2(q~i,n\)/dq~\]~K In favorable cases the other roots could 
be treated using a statistical approximation.26 However, it is 
often difficult to decide whether a given root trajectory is part 
of a statistical region. This is illustrated by the trajectory 
functions plotted in Figure 1. The trajectory functions are 
shown for n\ equal 0 in the energy range 3.025-3.69 kcal/mol, 
which is the region just above the threshold for reaction. 
Consider, for the first example, the calculation of PoiR. At E 
equals 3.15 kcal/mol, the trajectories with Jacobians of 0.151 
and 0.267 have collision lifetimes Qc\ (as defined previously13) 
of -7.2 X 1O-14 and -8.1 X lO -14 s, respectively, while the 
root trajectories with Jacobians of 0.077 and 0.005 have Qc\ 
equal to-7.9 X 10~14 and -5.0 X 10~14 s. If one follows these 
root trajectories as continuous functions of energy the two 
trajectories with largest Jacobians at 3.15 kcal/mol correlate 
with the trajectories with Jacobians of 0.042 (Qc\ = -6.3 X 
10~14 s) and 0.156 (gcl = -8.5 X 10~14 s), respectively, at E 
equal to 3.229 kcal/mol. But the trajectory with the third 
largest Jacobian of 0.077 at 3.15 kcal/mol correlates with the 
trajectory with a Jacobian of 0.078 (gc l = -8.1 X 10_14s)at 
3.229 kcal/mol. Thus the most direct trajectories (by the cri­
terion of largest Jacobians) at one energy do not correlate with 
the most direct trajectories at a nearby energy. A similar 
phenomenon occurs in trying to uniquely define the most direct 
trajectories as continuous functions of energy for the calcu­
lation of Po4R (compare, e.g., the Jacobians of the root tra­
jectories for this process at energies of 3.05 and 3.15 kcal/mol). 
Schatz et al.18 found a similar problem for one transition for 
F + H2 near threshold and for one transition for F + D2 near 
threshold. They said that the difficulty was alleviated by 
considering the calculation of the classical S matrix theory 
results from reverse quasiclassical trajectories. However, the 
trajectory functions for the reverse quasiclassical trajectories 
beginning with n (HCl) equal to 3 or 4 have the approximate 
shape of the trajectory functions plotted for the forward di-
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Figure 1. Trajectory functions «2(<?i,"i) as functions of <j\ for H + Cl2 (n\ 
= 0) — HCl + Cl at total energies (a) 3.025 kcal/mol, (b). 3.050 kcal/mol, 
(c) 3.150 kcal/mol, (d) 3.229 kcal/mol, (e) 3.459 kcal/mol, and (0 3.690 
kcal/mol. The Jacobians [2ir(dn2/dq\)]~l for the root trajectories are 
given in the figure with arrows pointing to the roots. 

rection at 3.05 kcal/mol in Figure 1 and are not simpler. 
Further using the reverse trajectories does not change the 
correlation of root trajectories as a function of energy. How­
ever, we found it was difficult to decide which root trajectories 
are most important only for P03R and Po4R near their thresh­
olds. At higher energies and for other transitions this was not 
a serious problem. Further it has recently been pointed out that 
the statistical approximation is not always valid whenever 
«2(91." 1) is a rapidly varying function of ^i .3 5 For these rea­
sons, and because it is difficult36-"38 to treat three or more root 
trajectories including those with small Jacobians in a uniform 
fashion, we included only the two roots with largest Jacobians 
and we did not take any account of other roots or statistical 
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contributions. Such corrections would presumably generally 
be small. 

We computed the total reaction probability BusccAp^R for 

state «i in the BUSCCA approximation by 

"n\ = Z- °ni«2 (1) 
«2 

For a given n\ and a total energy E we first ran 42 trajec­
tories evenly spaced in q~\. These provided an initial estimate 
of the q\ for each root trajectory and an initial estimate of the 
q\ values which divide reactive from nonreactive regions. These 
trajectories were also used to compute state-to-state transition 
probabilities by the forward quasiclassical trajectory histogram 
method (QCTH method). For the latter purpose, when the 
total quasiclassical reaction probability was less than unity, 
we calculated additional trajectories near the boundaries be­
tween reactive and nonreactive regions to determine the vi­
brational phase shift q~\ at the boundary to an accuracy of 
27r/210. We also plotted «2(^1) and graphically determined 
the values of q~\ at which it equals 0.5, 1.5, etc. From these 
values and from the additional trajectories at the boundaries 
of the reactive region we found the interval size A^i(«2,«i,/) 
for each interval i where the final vibrational action is closer 
to «2 than to any other integer. Then 

QCTH^,«2
R = (27r)-'z:A^1(«2,ni,0 (2) 

and QCTHP „,R was found using eq 1. 
In some cases quasiclassical trajectories were run for the 

reverse (endothermic) direction in order to calculate state-
to-state transition probabilities in the exothermic direction by 
the reverse quasiclassical trajectory histogram (QCTRH) 
method.1 '''7^19'34 The numerical details were the same as for 
the forward method. 

D. Rate Constants. One-dimensional state-to-state rate 
constants kn]„2(T) were calculated from the reaction proba­
bilities using39 

knin2(T) = (2THkT)-V2 

X J o Pntm
R (Eni)e-WT dEnl (3) 

where n is the reduced mass and £rei the energy for relative 
translational motion. £„,n2

upp is a number which was taken 
large enough that kni„2(T) would not be changed at least to 
three significant figures, if it were further increased. The in­
tegral 2 was evaluated by the trapezoidal rule with a step size 
of 0.03 kcal/mol for the temperature range 300 K < T < 1000 
K. To obtain the integrand at these grid points we used 
three-point interpolation (and near threshold for the trajectory 
calculations, extrapolation) of the integrand with special ex­
trapolation procedures (see below) for the quantum calcula­
tions at the lowest energies. We first calculated trajectories in 
the total energy range E = 2-10.38 kcal/mol with n\ equals 
0, 1, and 2 with most runs being at the same total energies as 
considered by Baer.22 Additional trajectories were run to 
minimize extrapolation errors in the threshold region and to 
eliminate the need for extrapolation at higher energies and in 
a few cases at intermediate energies to minimize interpolation 
errors if our error estimate exceeded 20%. We next summarize 
the extra trajectory calculations required near threshold and 
at high energy and the extrapolation procedures used for the 
quantum calculations. 

For the QCTH calculations we were concerned with all 
transitions connecting the states n\ = 0, 1, 2 to «2 = 2, 3, 4, 5, 
6. We found QCTHp17R w a s n o n z e r o for £ > 8,49 kcal/mol, 
QCTHp27R w a s n o n z e r o for E > 9.22 kcal/mol, and />o7R was 

nonzero at even higher energy, but the other transition 
probabilities not considered here had QCTHP„]n2

R equal to zero. 
We calculated enough trajectories near threshold so that the 
difference between the lowest energy where QCTHP„in2

R was 
found to be nonzero and the highest energy where it was found 
to be zero was in the range 0.025-0.3 kcal/mol, typically 
0.03-0.05 kcal/mol. In this way we ensured that this region 
never contributed more than 3% of the total value of the 
state-to-state rate integral. We found that QCTHPo2R becomes 
zero when E is increased to 5.54 kcal/mol, that the rate inte­
gral involving QCTHF03R had converged already at E equals 
10.38 kcal/mol, but that for other runs with n\ equals 0, 1, and 
2 En\nfw had to be in the range 12-20 kcal/mol. 

For QCTRH calculations we considered only trajectories 
with n(HCl) equals 4 for E in the range 2.54-4.50 kcal/mol, 
«(HC1) equals 3 for 2.40-4.50 kcal/mol, and n(HCl) equals 
2 for 4.15-5.50 kcal/mol. These regions include in each case 
the threshold energy for the reverse reaction [HCl(n) + Cl-* 
H + CI2]. The cases n(HCl) equals 3 and 4 produced «(Ch) 
equals both 0 and 1 and the case n(HCl) equals 2 produced 
only «(Cb) equals 1. In each case, however, H(C^) equals 1 
was produced only at the highest energy considered. To cal­
culate state-to-state rates in the forward direction for 
ground-state CI2 we augmented these values at higher energies 
with QCTH reaction probabilities. The two methods agree 
better at high energy than low energy and we just attempted 
to study the large differences closer to threshold. 

In the classical S matrix calculations we considered the 
transitions «i = 0 to «2 = 3,4, 5, 6 and «1 = 1, 2 to m = 2, 3, 
4, 5, and 6. Production of «2 ^ 2 or «2 ^ 7 is classically for­
bidden (i.e., is not classically allowed) for n\ =0 and produc­
tion of «2 - 1 or m > 7 is classically forbidden for n \ = 1, 2 for 
energies E < 10.38 kcal/mol. We calculated enough trajec­
tories near threshold so that the difference between the lowest 
energy at which a state-to-state process was found to be clas­
sically allowed and the highest energy at which it was found 
to be classically forbidden was in the range 0.025-0.284 
kcal/mol and was 0.11 kcal/mol on the average. This ensured 
that the contributions of this energy range to the state-to-state 
rate integrals was 0.2-20% in each case, averaging 7%. Addi­
tional high-energy calculations were performed at E equal to 
12, 13, 15, 17, and 20 kcal/mol in some cases. 

The quantum probabilities were obtained from the published 
figures22 for n\ = 0, 1 and in numerical form from Baer40 for 
« i = 2 . The threshold regions were found to contribute sig­
nificantly to the quantum rates but exact probabilities at 
threshold were not available. Therefore log Pn]m

R was ex­
trapolated linearly to iiVei = 0 for the rate calculation. In some 
cases this may overestimate the rate; an approximate estimate 
of the possible error due to this extrapolation was obtained by 
also calculating the rates with Pnin2

R extrapolated linearly to 
zero in the threshold region. The latter procedure probably 
underestimates the contribution of the threshold region to the 
rate. The contributon to the state-to-state rate from the ex­
trapolated region ranged from 1 to 92% and averaged 28% for 
the logarithmic extrapolation and ranged from 1% to 65% 
averaged 12% for the linear extrapolation. High-energy re­
action probabilities (energies greater than 10.38 kcal/mol for 
«i = 0, 1 and greater than 12 kcal/mol for n\ = 2) needed for 
the quantum rate calculations were assumed equal to those 
obtained in the QCTH and BUSCCA calculations, whichever 
agreed best with the quantum results at the highest energy for 
which the quantum results were available. 

In addition to the state-to-state rate constants kni„2(T) we 
also computed the rate constants for the reaction out of a given 
initial state defined either as 

knt(T) = Zk„]n2(T) (4) 
1 2 

Journal of the American Chemical Society / 98:22 / October 27, 1976 



6775 

Table II. The Fraction of Energy/„,(T) in Product Vibration for 
Reactant in the Initial State with Quantum Number n\ 

T, 0K n 

300 C 
400 
600 

1000 
300 1 
400 
600 

1000 
300 2 
400 
600 

1000 

i Quantum 

0.58 
0.58 
0.59 
0.59 
0.58 
0.62 
0.64 
0.64 
0.69 
0.70 
0.70 
0.68 

MT) 
QCTH 

0.58 
0.58 
0.58 
0.58 
0.65 
0.65 
0.65 
0.63 
0.73 
0.73 
0.71 
0.68 

BUSCCA 

0.58 
0.58 
0.58 
0.58 
0.67 
0.67 
0.66 
0.65 
0.63 
0.64 
0.65 
0.64 

or as 
kn](T) = (2irnkT)-1/2 

X j 0 Pni
R(EKi)e-E^kT dEni (5) 

where £„,UPP is 13-15 kcal/mol for n\ = 0,15 kcal/mol for/Z1 

= 1, and 18-19.5 kcal/mol for «i = 2. We also computed the 
thermally averaged rate constants for production of specific 
final states as 

k»KT) = ^Pn,(T)knitn{T) (6) 
«1 

where Pn](T) is the probability of an initial vibrational state 
and is given by 

Pn1(T) = (g v ) - ' exp[-(£„/ - EJ)IkT] (7) 

where Qw is the vibrational partition function and En ,v is one 
of the initial vibrational energies of Cb given in Table I. Finally 
we computed the thermal rate constant which may be defined 
either as 

k{T) - £ PHi(T)kni(T) (8) 

or as 

k{T) = Zk"KT) (9) 
«2 

For each rate constant at each temperature estimates of the 
possible numerical errors in the QCTH, QCTRH, and 
BUSCCA results were obtained by comparing the results 
obtained using the three-point interpolations and extrapola­
tions (preferred method) to those obtained using two-point 
linear and two-point and three-point logarithmic interpolations 
and extrapolations to calculate the rate constants. The error 
estimates we give are in each case by the largest deviation of 
any of these three other calculations from our preferred esti­
mate. For the quantum calculations, the error estimate given 
is the largest deviation from our preferred estimate obtained 
using any of these three methods of interpolation combined 
with the logarithmic extrapolation near threshold or using any 
of the four methods of interpolation combined with the linear 
extrapolation near threshold. 

E. Arrhenius Parameters. To calculate Arrhenius parame­
ters each rate constant was calculated for eight evenly spaced 
values of 1/T in the range 0.003 33-0.001 K"1 (300 K < T < 
1000 K) and the resulting rate constants were fit to the Ar­
rhenius expression 

k(T) = A exp(-EJRT) (10) 

by adjusting A and Ea to minimize the sums of the squares of 

E0 (kcal/mole) 

E (kcal/mole) 

Figure 2. Comparison of the reaction probabilities PoR and Pon2
R f°r the 

quantum (—), QCTH (—), and the BUSCCA (- -) calculations as 
functions of total energy e and initial relative kinetic energy EQ. QCTRH 
(- - -) calculations are shown only for PoR, Po3R, and PQAR. The TST re­
action probability is also shown and is a step function with a threshold at 
total energy of 3.152 kcal/mol. 

the differences of the calculated and fit values of log k(T) at 
these eight temperatures. For this calculation we used a version 
of the program ACTEN41 which was modified for the CYBER 
74 computer. 

III. Results 
A. State-to-State Reaction Probabilities and Fraction of 

Final Energy in Vibration. Figures 2-4 show the computed total 
and state-to-state reaction probabilities as functions of total 
energy E and translational energy En, where 

En1=E-En-(Cl2) (11) 

At selected energies, Figures 5-7 show state-to-state reaction 
probabilities as functions of final vibrational quantum number. 
Since the BUSC approximation is the most generally appli­
cable of the classical S matrix approximations the BUSCCA 
results are the only classical S matrix results shown in these 
figures. Numerical tables of all (quantum, QCTH, QCTRH, 
BUSCCA, AUSSCA, PSCCA, and CSCCA) the Pni„2

R(E) 
and Pni

R(E) values are given in the Appendix.42 

Figure 8 shows the computed fractions fn,(E) of total 
available energy (in excess of product zero-point energy) which 
is released as vibrational excitation energy of the product. This 
is computed as 

/„,(£) = [P„«(E)]-i Hf(n2,E)Pn]niHE) (12) 
«2 

Truhlar, Merrick, Duff / Rate Constants for the Collinear Reaction H + Cl2^ HCl + Cl 
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Figure 3. Reaction probabilities P\R and P\„2
R analogous to those given 

in Figure 1. E\ is the initial relative kinetic energy. No QCRTH results 
are shown. 
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Figure 4. Reaction probabilities PjR and Pm2
R analogous to those given 

in Figure 1. Ei is the initial relative kinetic energy. No QCRTH results 
are shown. 

where 

f = £„/(HCl) - I0V(HCl) 
JK 2t ' E+ AE- £0

V(HC1) 
(13) 

where AE is the classical exothermicity. We also computed the 
average fraction of energy in product vibration for reaction of 
initial state with quantum number n\ and translational tem­
perature T as 

/„,(70 = [ M D ] - 1 Zf[n2,Eni 
«2 

KT)]k«m(T) (H) 

where 

En^(T) = kT+E^nx) (15) 

and £a(«i) is the Arrhenius activation energy for knv Finally 
we computed the average fraction of energy in product vibra­
tion for reactant in a thermal system at temperature T as 

/(T) = [*(r)]-' Zf[n2,E^HT)]k"2(T) 
«2 

where 
7avail (T) = kT+Ea 

(16) 

(17) 

and E& in this equation is the Arrhenius activation energy for 
the total rate constant k. 

Thefni(T) and f(T) for the quantum, QCTH, and BUSS-
CA approximations are given in Table III. 

B. Rate Constants. Figures 9-11 show the Arrhenius plots 
of state-to-state rate constants and total rate constants for a 

Table HI. The Average Fraction of Energy/(T) in Product 
Vibration for Reactants in a Thermal System at Temperature T 

T, 0K 

300 
400 
600 

1000 

Quantum 

0.58 
0.59 
0.60 
0.61 

QCTH 

0.59 
0.59 
0.60 
0.61 

BUSCCA 

0.58 
0.59 
0.60 
0.61 

given initial state. Figure 12 shows the total rate constants 
computed for a thermal distribution of initial states. These are 
also tabulated in Table IV. The total rate constants into specific 
final states for a thermal distribution of initial states are given 
in Table V at selected temperatures. 

Numerical tables of the quantum, QCTH, QCTRH, and 
BUSCCA values of km„2{T), kni(T), and k"*(T) at eight 
evenly spaced temperatures in the range 300-1000 K are given 
in the Appendix.42 

C. Arrhenius Parameters. Tables VI and VII give the Ar­
rhenius parameters for the fits to the kn[n2(T), kni(T), and 
k(T). 

D. Transition-State Theory. For comparison purposes we 
also computed transition-state-theory one-dimensional rate 
constants using43 

k™(T) = (kT/h)[Qv*(T)/Q'HT)Qv(T)) 
X exp(-£0

VAZC/fc:r) (18) 
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Figure 5. Distribution function of the final vibrational energy for the 
quantum (—), QCTH (- - -), and BUSCCA (- -) calculations for the 
ground vibrational state of reactant for total energies (a) 4.152 kcal/mol, 
(b) 6.181 kcal/mol, and (c) 9.225 kcal/mol. The upper abscissa scale 
represents the final vibrational quantum number. 

Table IV. Comparison of the Quantum Thermal Rate Constant 
with Those Calculated Using the QCTH, BUSCCA, and TST 
Approximations 

T, 0K 

300 
400 
500 
600 
700 
800 
900 

1000 

Quantum 

1.8(3)" 
4.8 (3) 
9.0 (3) 
1.4(4) 
1.9(4) 
2.4 (4) 
2.8 (4) 
3.3 (4) 

k(T) 

QCTH 

1.21 (3) 
3.76(3) 
7.59(3) 
1.22(4) 
1.72(4) 
2.22 (4) 
2.70 (4) 
3.15(4) 

BUSCCA 

8.58 (2) 
2.81 (3) 
5.83(3) 
9.55 (3) 
1.36(4) 
1.77(4) 
2.17(4) 
2.54 (4) 

£TST(7-) 

1.23(3) 
3.85(3) 
7.85 (3) 
1.28(4) 
1.85(4) 
2.45 (4) 
3.07 (4) 
3.70(4) 

/cTST/Q(r) 

1.89(3) 
4.72 (3) 
8.75 (3) 
1.37(4) 
1.92(4) 
2.52 (4) 
3.13(4) 
3.76 (4) 

" The number in parentheses is the power often by which the entry 
should be multiplied. The units are cm molecule-1 s_1. 

where Qv* is a vibrational partition function calculated from 
the transition-state bound-normal-mode vibrational energies 
En

v*,44 2 r e l is the relative-motion partition function per unit 
length, and £oVAZC is the ground-state vibrationally adiabatic 
barrier height (also called43 the transition-state theory acti­
vation energy at 0 K). E< ,VAZC is given by 

p VAZC = = £ b + £ „ , v * - ^ 1 V ( C l 2 ) (19) 

with /Z1 = 0 and is 2.358 kcal/mol for the present calcula­
tions. 

The above form of transition-state theory assumes the re­
action coordinate is separable at the transition state, treats the 
reactant and the other degrees of freedom of the transition state 
quantum mechanically, and treats the reaction coordinate 
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Figure 6. Distribution function of the final vibrational energy for the 
quantum (—), QCTH (- - -), and BUSCCA (- -) calculations for initial 
vibrational quantum number 1 for total energies (a) 5.765 kcal/mol, (b) 
6.181 kcal/mol, and (c) 9.225 kcal/mol. The upper ordinate scale repre­
sents the final vibrational quantum number. 
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2.0 4.0 6.0 8.0 

E (kcal/mole) 

Figure 8. Fraction/„>(£) of the total energy (in excess of product zero-
point energy) which ends as vibrational excitation energy in the product 
HCl as a funtion of total energy for the quantum (—), QCTH ( — ) , and 
BUSCCA (- -) calculations. 

classically. We also evaluated the quantum correction on the 
reaction coordinate to lowest order in h. This is43,45 

T = 1 +(h\w*\/RT)2/24 (20) 

where w* is the imaginary frequency of the reaction-coordinate 
normal mode.46 It yields the transition-state-theory rate con­
stant corrected for tunneling (and nonclassical reflection) in 
the separable approximation as 

fcTST/Q(T) = rA: T S T ( r ) (21) 

The transition-state theory rate constants are shown in 
Figure 12 and tabulated in Table IV. 

The transition-state theory also predicts an average reaction 
probability as a function of total energy.47 If one assumes that 
the transmission coefficient of transition-state theory is unity 
(which corresponds to assuming the reaction coordinate is 
separable at the transition state and the motion along the re­
action coordinate is classical) the transition state theory re­
action probability in the threshold energy region is a step 
function of step-height unity with a threshold at a total energy 
of (E0

VAZC + E0
V) which is 3.152 kcal/mol. This step function 

is shown at threshold in the top panel of Figure 2. 

IV. Discussion 
A. Total Reaction Probabilities, Total Rate Constants, and 

Arrhenius Parameters. The top panel of Figure 2 shows that 
there is very good agreement between the quantum and 
quasiclassical total reaction probabilities for ground-state 
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Figure 9. Quantum (—), QCTH (- - -), and BUSCCA (- -) rate constants 
koR and ko„2

R (cm/molecule-sec) as functions of reciprocal temperatures. 
QCTRH (- - -) results are shown only for koiR and ko4R. 

reagents over the whole energy range. The major difference 
is the more gradual increase of the quantum results in the 
threshold region. This same type of behavior has been observed 
for the collinear H + H2 reaction7-8 and is most easily under­
stood by analogy to a one-dimensional barrier problem where 
the quantum results show nonclassical tunneling at energies 
below the barrier height and nonclassical reflection at energies 
above it. It should be mentioned, however, that for the near-
thermoneutral reaction Cl + H2 and its isotopic analogues, the 
quasiclassical trajectory method seems to more systematically 
underestimate the reaction probability near threshold, at least 
for some of the isotopes.15 

Figure 2 also shows that the calculation of the total reaction 
probability using the Bessel uniform semiclassical approxi­
mation of classical S matrix theory and the same trajectories 
as used for the quasiclassical trajectory calculations leads to 
reasonable results but nevertheless much worse results than 
the quasiclassical trajectory method.48 Although the reaction 
threshold energy for the BUSCCA calculation is the same as 
that for the QCTH calculation in this case, the BUSCCA 
calculation predicts a much more slowly increasing reaction 
probability and is in much worse agreement with the quantum 
calculations near threshold. Thus the QCTH calculation is 
preferred over the BUSCCA calculation for the interpretation 
of the trajectories.48 

The above conclusions are particularly interesting because 
they are almost diametrically opposed to the conclusions 
reached in the only other such studies18-20 for an exothermic 
reaction. For F + H2 and F + D2, the uniform semiclassical 
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Figure 10. Rate constants k]R and k\„2
R analogous to Figure 9. 

approximation using real-valued trajectories is much more 
accurate than the quasiclassical trajectory method using for­
ward trajectories. Probably the two most important differences 
between the H + Cl2 and F + H2 cases are the masses and the 
higher potential energy barrier in the former case (for F-I-H2 
the classical barrier height on the surface used for the previous 
comparisons18"20 is 1.06 kcal/mol20). However, further 
comparisons for other cases are needed to better understand 
the systematic errors of the trajectory calculations in the 
threshold regions. 

It is also interesting to compare the effective threshold 
energies for reaction with each initial vibrational state. Table 
VIII compares these effective threshold energies. For all three 
initial vibrational states the results agree within 0.14 kcal/mol 
with the quantum results for the lowest energy at which the 
reaction probability is 0.5. However, the effective threshold 
energy is generally defined as a lower energy where the reaction 
probability is smaller. Figures 2-4 and Table VIII show that 
for such a definition the QCTH method more greatly overes­
timates the threshold energy, especially for the ground vibra­
tional state of the reactant. Defining for discussion purposes 
the threshold energy as the energy where the reaction proba­
bility is 0.1, the QCTH method overestimates the threshold 
energies by 0.1-0.4 kcal/mol and the BUSCCA method pre­
dicts thresholds 0.1-0.2 kcal/mol higher than QCTH method 
except for the «i =2 initial vibrational state where the QCTH 
method overestimates the threshold energy by only 0.1 kcal/ 
mol but the BUSCCA method overestimates it by 1.0 kcal/ 
mol. 

It is interesting to see whether release of vibrational energy 
due to widening of the vibrational valley as the reactants pro­
ceed to the transition state is the main consideration for de-
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Figure 11. Rate constants k.2R and kini analogous to Figure 9. 
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Figure 12. Comparison of the quantum ( a ) , QCTH (O), and BUSCCA 
(A) rate constants (cm/(molecule -s)) averaged over thermal distributions 
of reactant vibrational states and summed over final vibrational states to 
the transition state rate constants kTsr (—) and £TST/Q ( _ ) a s functions 
of reciprocal temperatures. 
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Table V. Comparison of Quantum, QCTH, and BUSCCA Thermally Averaged Rate Constants k"*(T) for Production of Specific Final 
States ni at Selected Temperatures 

T, 0K 

300 
600 

1000 
300 
600 

1000 
300 
600 

1000 

Quantum 

QCTH 

BUSCCA 

2 

1.66(2)° 
1.04(3) 
2.55(3) 
3.11(1) 
6.63 (2) 
2.26 (3) 
1.90(0) 
1.48(2) 
6.75 (2) 

3 

5.39(2) 
3.87(3) 
8.60(3) 
4.59 (2) 
3.86 (3) 
8.82(3) 
3.71 (2) 
3.61 (3) 
8.62 (3) 

«2 

4 

9.74 (2) 
6.35 (3) 
1.26(4) 
6.50 (2) 
5.51 (3) 
1.18(4) 
4.44 (2) 
4.38(3) 
1.02(4) 

5 

9.91 (1) 
2.11(3) 
6.80(3) 
5.65(1) 
1.74(3) 
6.19(3) 
3.85(1) 
1.26(3) 
4.65 (3) 

" The number in parentheses is the power of ten by which the entry should be multiplied. The units are cm molecule-1 s 

Table VI. 

«1 

0 
0 
0 
0 
0 

2 
2 
2 
2 
2 

«2 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

Arrhenius Rate Constant Parameters for kn]„2(T) for the Temperature Range 300-1000 K" 

Quantum 
A 

4.21 (3)* 
3.51 (4) 
7.24 (4) 
1.86(4) 
4.82 (4) 

7.57(3) 
2.88 (4) 
3.95(3) 
6.28 (4) 
1.69(4) 

1.68(4) 
1.67(4) 
1.73(4) 
1.30(4) 
4.58 (4) 

£a 

2.22 
2.52 
2.58 
4.00 
5.49 

1.31 
2.38 
1.15 
2.43 
4.10 

2.41 
2.59 
2.22 
2.34 
2.56 

QCTH 
A 

3.16(3) 
4.88 (4) 
6.79 (4) 
4.08 (4) 
3.09 (4) 

1.87(4) 
2.29 (4) 
2.79 (4) 
5.09 (4) 
2.59 (4) 

1.93(4) 
1.53(4) 
2.00 (4) 
2.87 (4) 
3.43 (4) 

E, 

3.16 
2.78 
2.75 
5.13 
7.97 

2.64 
2.87 
2.78 
2.55 
4.53 

2.65 
2.67 
2.76 
2.54 
2.34 

QCTRH 
A 

n.c/ 
4.90 (4) 
5.79 (4) 
n.c. 
n.c. 

n.c. 
n.c. 
n.c. 
n.c. 
n.c. 

n.c. 
n.c. 
n.c. 
n.c. 
n.c. 

E3 

n.c. 
2.46 
2.61 
n.c. 
n.c. 

n.c. 
n.c. 
n.c. 
n.c. 
n.c. 

n.c. 
n.c. 
n.c. 
n.c. 
n.c. 

6 

5.13(0) 
4.18(2) 
2.18(3) 
4.27 (0) 
3.95 (2) 
2.18(3) 
9.16(-1) 
1.92(2) 
1.52(3) 

- i 

BUSCCA 
A 

Cf/ 
4.37 (4) 
7.00 (4) 
4.01 (4) 
4.77 (4) 

5.72(3) 
3.77 (4) 
1.46(4) 
5.57(4) 
3.25 (4) 

1.33(4) 
1.97(4) 
2.10(4) 
1.63(4) 
3.13(4) 

£a 

Cf. 
2.85 
3.00 
6.56 
9.00 

3.19 
2.90 
3.21 
2.75 
5.56 

2.73 
3.03 
2.76 
3.15 
3.20 

" A and £ a have units of cm molecule-1 s - 1 and kcal/mol, respectively. * The number in parentheses is the power often by which the entry 
should be multiplied, 
is identically zero. 

' n.c: these rate constants were not calculated. d c.f.: this transition is classically forbidden so the BUSCCA rate constant 

Table VII. Arrhenius Rate Constant Parameters for k„,(T) and 
k(T) for the Temperature 300-1000 K" 

" i 

0 
1 
2 

Quantum 
A 

1.28(5)* 
1.26(5) 
1.14(5) 
1.19(5) 

£a 

2.68 
2.54 
2.48 
2.61 

QCTH 
A 

1.38(5) 
1.34(5) 
1.19(5) 
1.27(5) 

£'a 

2.86 
2.73 
2.54 
2.79 

BUSCCA 
A £ a 

1.22(5) 2.99 
1.24(5) 2.90 
9.05 (4) 3.02 
1.09(5) 2.90 

"A and E3 have units of cm molecule-1 s - 1 and kcal/mol, re­
spectively. * The number in parentheses is the power of ten by which 
the entry should be multiplied. 

termining the differences in the threshold energies. Since the 
barrier occurs early we might expect the motion between the 
reagent configuration and the transition state one to be vi-
brationally adiabatic.49-51 We will use the vibrationally adi-
abatic zero-curvature model52 to study this question. In this 
model one expects the reaction probability to be about 0.5 at 
a translational energy equal to the VAZC barrier height de­
fined in eq 19. The comparison of this theory with the quantum 
calculations is given in Table VIII. It shows that the VAZC 
theory predicts the threshold energy within 0.11 kcal/mol. This 
is very good, in accord with our expectations based on previous 
applications to reactions with symmetric barriers.12 '52 

The top panels of Figures 3 and 4 show that the main fea­
tures of the comparison of quantum, QCTH, and BUSCCA 
total reaction probabilities as functions of energy are the same 
for excited reagents as for ground state ones. In particular, the 
QCTH results are still in good agreement with the quantum 
ones over the whole energy range although they show a more 
rapid increase with energy in the threshold region. But, as 
mentioned already, the BUSCCA results are much too small 
or zero in the threshold region. Further they are not quite as 
accurate as the QCTH results are at higher energies. 

The differences in the reaction probabilities discussed above 
have direct consequences for the total rate constants for se­
lected initial states given in the Appendix and Figures 9-11. 
At higher temperatures the QCTH rate constants are very 
accurate (at 1000 K they agree with the quantum results within 
the estimates of possible numerical error for all three initial 
vibrational states) while the errors in the BUSCCA rate con­
stants are a little larger. At lower temperatures for /Ti equals 
0 and 1 the QCTH results fall a little below the quantum ones 
(22-29% at 300 K) while the BUSCCA results have much 
larger errors (too low by about a factor of 2). The good 
agreement of the QCTH results with the quantum ones over 
the whole temperature range for n \ equals 2 is most impres­
sive. 

The temperature dependence and direction of these errors 
in the rate constants are easily understood in terms of the 
low-energy tail of the quantum probability of reaction. The 
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Table VIII. Comparison of the Relative Translational Energies En ,* fkcal/mol) at which the Reaction Probabilities Pn ,
R for Initial State 

«i become x with the Vibrationally Adiabatic Zero-Curvature Barrier Heights £„,VAZC (also in kcal/mol) for Initial State «1 

F O.t F 0.5 
C' n\ *^n\ 

«i BUSCCA QCTH Quantum BUSCCA QCTH Quantum £„,VAZC 

0 2.32 2.23 1.83 2.58 2.37 2.35 2.37 
1 2.14 2.03 1.82 2.46 2.25 2.21 2.25 
2 2.08 1.89 1.79 3.0 2.11 2.25 2.14 

Table IX. Maximum Values of P„,„2
R for E < 10.38 kcal/mol" 

«2 

2 
3 
4 
5 
6 
7 

2 
3 
4 
5 
6 
7 

2 
3 
4 
5 
6 
7 

Quantum 

0.04 
0.30 
0.62 
0.43 
0.17 
n.a.* 

0.14 
0.31 
0.10 
0.65 
0.21 
n.a.* 

0.16 
0.23 
0.20 
0.13 
0.62 
n.a.6 

P R 

'n\n2 QCTH 

0.05 
0.44 
0.73 
0.40 
0.28 
0.12 

0.18 
0.21 
0.29 
0.68 
0.23 
0.06 

0.20 
0.15 
0.21 
0.48 
0.49 
0.03 

BUSCCA 

0.00 
0.40 
0.74 
0.36 
0.21 
0.00 

0.13 
0.34 
0.21 
0.62 
0.25 
0.00 

0.15 
0.22 
0.28 
0.19 
0.39 
0.00 

" These numbers are only lower bounds since the searches for 
maxima were not carried out to an accuracy of 0.01. * Not avail­
able. 

various calculations disagree most strongly in the energy region 
of this tail and this region makes the most important fractional 
contribution to the rate constant at low temperatures. Thus 
Table VII shows that the BUSCCA and QCTH methods 
overestimate the energy of activation by 0.29 and 0.18 kcal/ 
mol, respectively. The agreement of the QCTH Arrhenius 
energy of activation with the quantum one within 0.2 kcal/mol 
is very encouraging for practical applications of the QCTH 
method. For example a quasiclassical trajectory calculation 
of the Arrhenius energy of activation has sometimes been 
used51 for the determination of parameters in semiempirical 
potential energy surfaces. While such a procedure is obviously 
incapable of uniquely determining a potential energy surface, 
it is encouraging that it is not shown to lead to large systematic 
errors. 

The top panel of Figure 2 shows that the average reaction 
probability computed from transition-state theory (TST) with 
the classical approximation for motion along the reaction 
coordinate agrees with the quasiclassical trajectory calculation 
very well and thus is also in good agreement with the quantum 
calculations. Because of the very good agreement of the TST 
and QCTH average reaction probabilities, it is not surprising 
that the rate constants (see Table IV and Figure 12) are also 
in good agreement. As expected the disagreement of TST rate 
constants with the QCTH and quantum results is greatest at 
low temperatures where the calculated rate constant is most 
sensitive to the details of the threshold reaction probabilities. 
Thus the TST rate constant differs from the quantum one by 
20% at 300 K but by only 13% at 1000 K. Since the TST rate 
constant is too low at low temperatures, a quantum treatment 
of the reaction coordinate might be expected to provide an 

improved result. However, Table IV and Figure 12 show that 
the Wigner "tunneling correction" is too large to improve the 
comparison with the quantum results. This might have been 
expected since it is known that quantum corrections to a sep­
arable reaction coordinate are inaccurate for the collinear H 
+ H2 reaction.53 Miller and co-workers have shown that 
nonseparable transition state theory treatments are much more 
accurate in that case.54 

B. State-to-State Reaction Probabilities, Rate Constants, 
and Arrhenius Parameters. Ground-State Reagents. Figures 
2 and 5 show good general agreement of the QCTH and 
BUSCCA methods for the magnitudes of the state-to-state 
reaction probabilities Pon2

R except in the threshold region, 
where they underestimate the reaction probability. This good 
agreement is illustrated for example by the maximum values 
obtained for each probability at any energy. These are com­
pared in Table IX. The agreement of the various Pnim

K curves 
is best for «2 equals 3 and 4 and worst for «2 equals 2 and 7. 
This is not surprising since the histogram method should not 
be expected to be accurate for the lowest and highest vibra­
tional states for which it predicts nonzero values and since 
complex-valued trajectories should be important for these 
states in classical S matrix theory. Although reaction into the 
«2 = 2 state is actually classically forbidden, the QCTH 
method leads to nonzero Po2R in the energy range 3.7-5.5 
kcal/mol. The QCTRH method predicts a zero value of Po2R 

up to an energy of 5.25 kcal/mol. The poor agreement of the 
QCTH and quantum results for «2 equals 4 at the relatively 
high total energies around 6 kcal/mol is much more surprising. 
The extremely wide threshold region for «2 equals 5 also causes 
considerable error. In all cases the BUSCCA method is inac­
curate near threshold. The QCTH method leads to quite 
complicated threshold behavior for «2 equals 4 and in this case 
the reverse quasiclassical trajectory method is much more 
accurate. For «2 equals 3 the reverse quasiclassical trajectory 
method again leads to a more accurate threshold value and a 
more qualitatively correct dependence on energy in the 
threshold region. But it overestimates Po3R over the whole 
energy region (up to 4.5 kcal/mol) for which it was calculated 
and the rate constant is not improved as discussed in the next 
paragraph. 

Figure 2 shows that only Po3R and Po4R contribute signifi­
cantly to the reaction probability for energies up to about 8 
kcal/mol where PosR begins to contribute significantly. Thus 
the good agreement of the QCTH and quantum values for Po3R 

and Po4R discussed just above ensure the good agreement of 
the QCTH and quantum values of the rate constants as shown 
in the top panel of Figure 9 and discussed in the previous sub­
section. Figure 9 also shows that the errors in the QCTH 
state-to-state rate constants are smallest for the largest rate 
constants; thus the errors are less than or equal to 23 and 32% 
over the whole temperature range for the QCTH method for 
«2 equals 3 and 4, respectively. But the large error in the 
threshold region causes errors of factors of 3.5 and 39 for the 
QCTH and BUSCCA rate constants, respectively, for «2 equal 
to 5 at 300 K. Even for this case, however, the errors are con­
siderably smaller at higher temperatures. The reverse quasi-
classical trajectory method leads to more accurate rate con-
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stants than the forward method for n2 = 4 at low enough 
temperature but is otherwise less accurate for state-to-state 
rate constants. The QCTH rate constant for n2 = 2 is in poor 
agreement with the quantum rate constant at all temperatures; 
this could have been expected since this transition is classically 
forbidden. At low temperatures the threshold energy region 
contributes significantly to the rate constants and the QCTH 
and BUSCCA methods systematically underestimate all the 
state-to-state rate constants due to reactive thresholds being 
at higher energies than the corresponding quantum ones. In­
terestingly, the incorrect threshold behavior of the QCTRH 
method for />03R (see Figure 2) results in an overestimate of 
the rate constant koi(T) at all temperatures. 

The Arrhenius activation energies for the state-to-state rate 
constants are affected in a predictable manner. Table VI shows 
that the activation energies computed from the quantum rates 
are always lower than the QCTH and BUSCCA values for M1 
= 0. For &03 and &04, however, the QCTRH method predicts 
lower activation energies than the quantum ones. These results 
are all in agreement with the discussion of the state-to-state 
reaction probabilities earlier in this section. 

Excited Reactants. Figures 3 and 4 and Tables VIII and IX 
show that the trajectory calculations are in many cases even 
more accurate for excited reactants than for ground state ones 
but there are some interesting exceptions (notably P\2

R, P\4R, 
P2s

R, and P26
R). Consider first /J1 equals 1. The QCTH results 

for P]2R near threshold and P\4K throughout the whole energy 
region are in very poor agreement with the quantum results. 
The QCTH results for PnR, P\sR, and P]6

R are in good 
qualitative agreement with the quantum calculations although 
near threshold the QCTH results for P\3R and P\sR are too 
small. This effect is similar, for example, to what was seen for 
Po3R- The BUSCCA calculations are in good agreement with 
the quantum ones for reactive transitions which are strongly 
classically allowed. In the threshold energy regions we again 
find that the BUSCCA approximation severely underestimates 
the state-to-state reaction probabilities. For n\ equals 1, the 
reverse quasiclassical trajectory method again seems to im­
prove the threshold values of the various state-to-state reaction 
probabilities. 

For ti\ equals 2, the QCTH and BUSCCA state-to-state 
reaction probabilities are in very good agreement with the 
quantum ones, except for P25R and P26

R. For these two tran­
sitions the QCTH method predicts an incorrect dependence 
on energy and the BUSCCA method leads to thresholds about 
1 kcal/mol too high. The delayed threshold for P26

R dramat­
ically affects the BUSCCA curve for P2

R and may be con­
sidered responsible for its gross disagreement with the quantum 
results (see top panel of Figure 4). 

The good general agreement of the QCTH and BUSCCA 
state-to-state reaction probabilities with the quantum ones is 
illustrated more clearly at selected energies in Figures 6 and 
7. Again we see that for weakly classically allowed processes 
(i.e., cases where the QCTH state-to-state reaction probabil­
ities are small and the BUSCCA ones are nonzero) the QCTH 
and BUSCCA results are not reliable, while for cases where 
the process is more strongly classically allowed the QCTH and 
BUSCCA results are in better agreement with the quantum 
results. It should be pointed out that the quantum results in 
Figures 5-7 are plotted using Baer's incorrect values for the 
vibrational energies. It is seen that the agreement with the 
present results would be improved if they were plotted at the 
correct energies. This may indicate that the associated inac­
curacies in the quantum results may not be large. 

Figures 10 and 11 again show that the rate constants com­
puted from the trajectory calculations are in good agreement 
with the quantum ones at large temperatures with a few no­
table exceptions. Although more state-to-state rate constants 
are large for excited reactants, the errors in the quasiclassical 

results have not become uniformly smaller than for ground 
state reactants. There are errors of about a factor of 2 or even 
a little larger over the whole temperature range for three of the 
fairly large state-to-state rate constants, namely, for the 1 -» 
3,1 -»• 4, and 2 -* 5 processes. These results serve as a caution 
that the quasiclassical trajectory histogram method is some­
times unreliable even for results for classically allowed pro­
cesses averaged over a translational energy distribution cor­
responding to a temperature as high as 1000 K. The errors in 
these three rate constants are in each case due to a systematic 
error (underestimates or overestimates) in the state-to-state 
reaction probabilities over the whole important energy re­
gion. 

At lower temperatures the QCTH and BUSCCA methods 
underestimate the rate constants for all cases except the QCTH 
results for k2s and kit,. This general result is due to the 
thresholds being generally too high in the trajectory meth­
ods. 

Just as for the ground states, Table VI shows the Arrhenius 
activation energies are generally fairly accurate when the 
quantum value for the preexponential factor A exceeds 104 

molecules/(cm s). 
Overall the BUSCCA method is less accurate than the 

QCTH method for excited reactants. 
Summary. Although the quasiclassical trajectory method 

is accurate within 29% for the overall rate constant out of any 
vibrational state of Cl2 over the whole temperature range, the 
state-to-state rate constants determined by the histogram 
procedure are less accurate and in some cases are much less 
accurate (in error by a factor of 2 or larger) even for classically 
allowed transitions. The errors in the quasiclassical trajectory 
rate constants are mostly due to errors in the threshold region 
but in some cases there are quite significant errors due to higher 
energy failures of the histogram method. In general the errors 
are less serious for the Arrhenius activation energies. The 
classical S matrix theory does not provide a generally better 
method for extracting state-to-state transition probabilities 
from these (real-valued) trajectory calculations. 

It is interesting to compare the results of the present study 
to those of Schatz et al. For F + H2 and F + D2 it was found 
that the QCTRH and BUSCCA methods were in much better 
agreement with the quantum mechanical calculations than the 
QCTH method. The present study shows that the QCTH 
method is in better agreement with the quantum results than 
the QCTRH and BUSCCA are (except right near threshold 
where the QCTRH method appears to be more accurate). 
Thus, one should be cautious in selecting a preferred method 
for interpreting quasiclassical trajectories or making gener­
alizations concerning the applicability or accuracy of the 
various methods. 

C. Percentage of Energy Released in Vibration. Figure 8 
shows that generally the fraction of available energy predicted 
to be in vibration by the QCTH and BUSCCA methods is in 
reasonably good agreement with the quantum results. There 
are, however, important differences near threshold. Due to the 
long history of applying quasiclassical trajectory calculations 
to predict the vibrational energy of products of thermal reac­
tions, there is considerable interest in the threshold energy 
region of these curves for ground-state reactants. Thus it is 
notable that the QCTH results in that case differ from the 
quantum ones in a qualitatively different way than in the only 
previous available comparison.18,19 Thus one must be very 
cautious about generalizing the shapes of these curves and the 
directions of the errors to other cases. 

Table II shows that, on averaging over thermal distributions 
of translational energy, the fraction of energy predicted to be 
in product vibration by either the QCTH or BUSCCA method 
is in excellent agreement with the quantum calculations for 
all temperatures for n \ equals 0. Thus the results further av-
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eraged over a thermal distribution of vibrational states (Table 
III) are also excellent. For excited reactants, the agreement 
with quantum results (Table II) is again good at higher tem­
peratures but the trajectory results are in error by as much as 
about 10% at 300 K. 

V. Concluding Remarks 
The quasiclassical trajectory histogram method has been 

tested against exact quantum mechanical calculations for 
state-to-state reaction probabilities for the collinear reaction 
H + Ch- This method uses classical trajectories corresponding 
to the correct quantized initial vibrational action variables and 
uses the histogram method to assign final vibrational quantum 
numbers. We also examined the use of classical S matrix theory 
to assign final vibrational quantum numbers. Although other 
methods of assigning final vibrational quantum numbers are 
possible55 they were not tried. Particular care was taken to 
evaluate the histogram results precisely so that conclusions 
based on comparison to exact quantum results are the correct 
conclusions about the classical approximations, i.e., about real 
errors in the method as opposed to statistical (Monte Carlo) 
errors. We find the errors in trajectory calculations are largest 
near threshold and are larger for vibrationally excited states 
of the reactants than for ground state reactants. Errors are 
smaller but not always insignificant when results are averaged 
over thermal distributions of reactant states. Since trajectory 
calculations are widely used to compute product vibrational 
energy or state distributions, the results in Tables II, III, and 
V are particularly interesting. They show, for example, that 
for ground-state reactants with a thermal distribution of rel­
ative translational energies, the average vibrational energy of 
the products can be accurately predicted at either 1000 or 300 
K and the trajectory results for the complete distribution of 
state-to-state reaction probabilities are accurate at 1000 K, 
but the latter are not accurate at 300 K. 
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